214 research outputs found

    A Unified Stochastic Formulation of Dissipative Quantum Dynamics. I. Generalized Hierarchical Equations

    Full text link
    We extend a standard stochastic theory to study open quantum systems coupled to generic quantum environments including the three fundamental classes of noninteracting particles: bosons, fermions and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Staring from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hiearchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and exibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the presetn formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alterantively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.Comment: 31 pages, 2 figure

    Quantum transport in d-dimensional lattices

    Get PDF
    We prove analytically that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional modes. This reduction leads to the conclusion that the dynamics in uniform fermionic and bosonic lattices is always ballistic. By the use of the Jordan-Wigner transformation we extend our analysis to spin lattices, proving the existence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport with the number of excitations in the spin lattice, indicating that a single excitation propagates always ballistically and that the non-ballistic behavior of uniform spin lattices is a consequence of the interaction between different excitations.Comment: 13 pages, 5 figure

    Forster resonance energy transfer, absorption and emission spectra in multichromophoric systems: III. Exact stochastic path integral evaluation

    Get PDF
    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators one can also immediately compute energy transfer rates using the multi-chromophoric Forster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion is the only perturbative method capable of generating uniformly reliable energy transfer rates and spectra across a broad range of system parameters.Comment: 20 pages, 4 figure

    Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    Get PDF
    We investigate the microscopic mechanism of quantum energy transfer in the nonequilibrium spin-boson model. By developing a nonequilibrium polaron-transformed Redfield equation based on fluctuation decoupling, we dissect the energy transfer into multi-boson associated processes with even or odd parity. Based on this, we analytically evaluate the energy flux, which smoothly bridges the transfer dynamics from the weak spin-boson coupling regime to the strong-coupling one. Our analysis explains previous limiting predictions and provides a unified interpretation of several observations, including coherence-enhanced heat flux and absence of negative differential thermal conductance in the nonequilibrium spin-boson model. The results may find wide applications for the energy and information control in nanodevices.Comment: 11 pages, 4 figure

    Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect

    Get PDF
    We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains using quantum self-consistent phonon approach. The heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be non-monotonically tuned not only with the intrinsic system parameters but also with the external temperature.Comment: 7 pages, 7 figure
    • …
    corecore